$$= \omega(g_1, g_2, g_3) \omega(g_1, g_1g_3, g_4) \omega(g_2, g_3, g_4)$$

i.e. ω is a 2-cocycle or BG

C a semisimple tensor category
- Gosthandrick ring, bans
$$\lambda_{1}\mu, v \in \hat{c} = simple of$$

Formal addition
 $V_{\lambda} \otimes V_{\mu} = \bigoplus V_{\nu}^{\otimes a_{\lambda}\mu}$
(j symbols $H_{\lambda_{\mu}\mu}^{*} = C(V_{\nu}, V_{\lambda} \otimes V_{\mu})$ so $V_{\nu}^{\otimes a_{\lambda}\mu} = H_{\lambda_{\mu}}^{*} \otimes V_{\nu}$
 $(V_{\nu} \otimes V_{\mu}) \otimes V_{\nu} = \bigoplus (\bigoplus H_{a\mu}^{*} \otimes H_{a\lambda}^{*}) \otimes V_{\nu}$
 $V_{\alpha} \otimes (V_{\mu} \otimes V_{\mu}) = \bigoplus (\bigoplus H_{a\mu}^{*} \otimes H_{a\lambda}^{*}) \oplus V_{\nu}$
 $(\underbrace{\Xi_{\mu}}^{*}_{\mu})_{j}^{*} \bigoplus H_{a\mu}^{*} \otimes H_{\lambda}\mu^{*} \longrightarrow \bigoplus H_{\mu}^{*} \otimes H_{\lambda}^{*}$
 \hat{T} (j-symbol
Pontagon axion branslates into a cubic relation among (j ay dols)
 \overline{Thm} two semisimple tensors cats are tensor
equivalent iff they have the same Gowth and hick group.
and the same bj symbols

$$\pi_{0} \mathcal{M}(\mathcal{Z}(G7)) = H^{3}(\mathcal{B}G, \mathbb{C}^{*})$$

$$\overline{\mathsf{Tannaku}} \quad duality : \quad \mbox{finite group determind up to in by}$$

$$\operatorname{Rep}(G_{0}) \quad as \quad a \quad \mbox{tensor category}.$$

$$\mathcal{D}_{4}, \mathcal{Q}_{8} \longrightarrow have \quad \mbox{the same Govthendiech group}$$

lecture Page 3



